
Advanced Algorithms September 23, 2024

Lecture 4: Linear Programming: Extreme Points
Notes by Ola Svensson1

In this lecture we do the following:

• We recall linear programming.

• We define extreme points and show that any optimal solution can be taken to be an extreme point
(if feasible region is bounded).

• We then show how to exploit extreme point structure for max-weight bipartite matching and
bipartite vertex cover.

These notes are based on [1].

1 Recall LPs, Extreme Points, and Bipartite Matching

Recall that a linear program is the problem of optimizing a linear objective subject to linear constraints
(inequalities and equalities):

Definition 1 A linear program (LP) is the problem of finding values for n variables x1, x2, . . . , xn ∈ R
that minimize (or equivalently, maximize) a given linear objective function, subject tom linear constraints

minimize:
n∑

i=1

cixi

Subject to:
∑
i

ei,jxi = bj for j = 1, . . . ,m1∑
i

di,kxi ≥ gk for k = 1, . . . ,m2∑
i

fi,pxi ≤ lp for p = 1, . . . ,m3

where m1 +m2 +m3 = m.

An example of a linear program is as follows:

Maximize x+ y

Subject to x+ y ≤ 2

y ≤ 1

x, y ≥ 0

The following figure shows the feasible area.

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.
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Feasible Solution

When solving discrete optimization problems (such as matchings, vertex cover, spanning tree, etc.)
it will be important that optimal solutions have certain structure. That is where we use extreme points
and their structure (which is also important for the simplex algorithm).

1.1 Extreme Points

Let us first define an extreme point:

Definition 2 A feasible solution is an extreme point if it cannot be written as a convex combination of
other feasible solutions.

Just to recall:

Definition 3 A convex combination of points x1, x2, ..., xn is a point of the form
∑n

i=1 λixi where the
real numbers λi satisfy

∑n
i=1 λi = 1 and λi ∈ [0, 1] for all i.

Now, we state a theorem about extreme points. Extreme points are important because sometimes
they have useful structural properties, which we can exploit to design algorithms. We see two such
examples in this lecture.

Theorem 4 If the feasible region is bounded, there always exists an optimum which is an extreme point.

Proof As the feasible region is bounded, there is an optimal solution x⋆ and any feasible point can
be written as a convex combination of the extreme points. In particular, we have x⋆ =

∑
i λix

(i) where
x(i)’s are feasible extreme points and λ′s are non-negative real numbers satisfying

∑
i λi = 1. Now let

c be the vector defining the objective that we wish to maximize (the proof is the same if we minimize).
Then we have

cTx⋆ = cT (
∑
i

λix
(i)) =

∑
i

λic
Tx(i) ,

which implies that there is an extreme point x(i) such that cTx(i) ≥ cTx⋆, i.e., it is an optimal solution.

If the feasible region is not bounded, then we might not have any extreme points. For example, the
following LP does not contain any extreme points.

Maximize y

Subject to y ≤ 1

y ≥ 0
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Feasible Solution

2 Maximum Weight Bipartite Perfect Matching

In this section we are going to concentrate on maximum weight/profit bipartite perfect matching. Given
a bipartite graph G = (V,E) with V partitioned into A and B and edge-weights w → R, this is the
problem where we wish to find a perfect matching M that maximizes w(M) =

∑
e∈M w(e). Recall that

a matching is perfect if every vertex is incident to exactly one edge in the matching, i.e., every vertex is
matched. The LP for the maximum weight bipartite perfect matching problem can be formulated as

Maximize
∑
e∈E

xewe

Subject to
∑

e=(a,b)∈E

xe = 1 ∀a ∈ A

∑
e=(a,b)∈E

xe = 1 ∀b ∈ B

xe ≥ 0 ∀e ∈ E

In the linear program, we have a variable xe for each edge e with the intended meaning that it should
take value 1 if that edge is picked by the matching. The constraints say that each vertex should have
exactly one incident edge in the matching.
Note that in a feasible solution the variables xe may take values strictly between 0 and 1, which does

not really correspond to a matching. However, we have the following key structural result:

Claim 5 For bipartite graphs, any extreme point solution to the LP is integral.

Proof Let x∗ be an extreme point for the graph G = (V1, V2, E) and let Ef = {e ∈ E : 0 < x∗
e < 1}.

Suppose towards contradiction that Ef ̸= ∅. Note that Ef must then contain a cycle: indeed any vertex
incident to an edge in Ef is incident to at least two edges in Ef . All these edges are fractional and we

want to define y and z so that they are feasible solutions and x∗ = 1
2 (y + z) which will contradict the
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fact that x∗ is an extreme point. Let e1, e2, ..., e2k be the edges of the cycle. Let y, z be

ye =

 x∗
e + ϵ if e ∈ {e1, e3, e5, ..., e2k−1}

x∗
e − ϵ if e ∈ {e2, e4, e6, ..., e2k}

x∗
e otherwise

ze =

 x∗
e − ϵ if e ∈ {e1, e3, e5, ..., e2k−1}

x∗
e + ϵ if e ∈ {e2, e4, e6, ..., e2k}

x∗
e otherwise

Notice that the degree constraints are still satisfied by y and z as we are alternating between
increasing and decreasing the edge values in a cycle of even length. Hence, to ensure feasibility,
we need to choose such a small ϵ so as to guarantee that all ye and ze are in [0, 1]. For example
ϵ = min {x∗

e, (1− x∗
e) : e ∈ Ef} gives that both y and z are feasible. Now one can easily see that

x∗ = 1
2 (y + z) which contradicts the assumption that x∗ is an extreme point.

Because of the above claim, the polytope

P =
{
x :

∑
b:(a,b)∈E

x(a,b) = 1 a ∈ A,

∑
a:(a,b)∈E

x(a,b) = 1 b ∈ B,

x(a,b) ≥ 0 (a, b) ∈ E
}

is called the bipartite perfect matching polytope. Also, it says that we can solve the maximum weight
bipartite matching problem by simply solving the above linear program.
Unfortunately, the degree-constraints are not sufficient for general graphs which can be seen by the

following example:

1 2

3

1

1 1

Here, the solution that sets xe = 1/2 for every edge e gives the optimal value 3/2, but any integral
matching has only value 1 (and the graph does not even have a perfect matching).

3 Vertex Cover

Here, we consider minimum weight vertex cover on bipartite graphs. The definition of the vertex cover
problem is:

Definition 6 Given a graph G = (V,E) with node-weights w : V → R find a vertex cover C (i.e.,
e ∩ C ̸= ∅ for all e ∈ E) that minimizes w(C) =

∑
v∈C w(v).

Example 1 The minimum weight vertex cover (depicted in black) of the following graph is 3 (obtained
by taking the vertices of weight 1 and 2).

1 2

3
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Similarly to the case of maximum weight bipartite perfect matching, we formulate a linear program
for the vertex cover problem. Here, we have a variable xv for each vertex v with the intended meaning
that it takes value 1 if that vertex is in the vertex cover. The constraints say that each edge needs to be
covered. The LP can be formulated as follows:

Minimize
∑
v∈V

xvw(v)

Subject to xu + xv ≥ 1 ∀{u, v} ∈ E

0 ≤ xv ≤ 1 ∀v ∈ V

We have the following structural result for bipartite graphs:

Claim 7 For bipartite graphs, any extreme point to the vertex cover LP is integral.

Proof Consider an extreme point x∗ and let Vf = {v : 0 < x∗
v < 1} be those vertices with fractional

values in x∗. Suppose toward contradiction that Vf ̸= ∅. Further, let A,B be the bipartition of V and let
Af = Vf ∩A and Bf ∩Vf be the fractional vertices in A and B, respectively. As for bipartite matchings,
we reach a contradiction by defining feasible solutions y and z so that x∗ = 1

2 (y + z) which contradicts
that x∗ is an extreme point. Let ϵ = min {xv, (1− xv) : v ∈ Af ∪Bf} and define y and z by

yv =

 x∗
v + ϵ if v ∈ Af

x∗
v − ϵ if v ∈ Bf

x∗
v otherwise

zv =

 x∗
v − ϵ if v ∈ Af

x∗
v + ϵ if e ∈ Bf

x∗
v otherwise

Clearly, we have that x∗ = 1
2 (y + z). It remains to verify that y and z are feasible solutions. Let us

verify y (the argument that z is feasible is the same). By the selection of ϵ, we have that 0 ≤ yv ≤ 1
for all v ∈ V . We now need to verify that the constraint for every edge is satisfied. Consider an edge
{a, b} ∈ E in the bipartite graph. We need to verify that ya + yb ≥ 1. If xa = 1 (or xb = 1), then we
have that ya = 1 (or yb = 1) and so the constraint holds. Otherwise 0 < xa, xb < 1 and so a ∈ Af and
b ∈ Bf . This in turn implies that y is feasible since

ya + yb = (xa + ϵ) + (xb − ϵ) = xa + xb ≥ 1 ,

where the last inequality holds because x∗ is a feasible solution.

The above structural result says that we can solve minimum weighted vertex cover on bipartite
graphs by simply solving the above linear program to find an optimal extreme point. It does not work
for general graphs which can be seen by considering the triangle (as for matchings). In contrast to
matchings, the vertex cover problem on general graphs is an NP-hard problem and we do not expect to
have efficient algorithms for it.
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